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Model of low-pass filtering of local field potentials in brain tissue
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Local field potentials �LFPs� are routinely measured experimentally in brain tissue, and exhibit strong
low-pass frequency filtering properties, with high frequencies �such as action potentials� being visible only at
very short distances ��10 �m� from the recording electrode. Understanding this filtering is crucial to relate
LFP signals with neuronal activity, but not much is known about the exact mechanisms underlying this
low-pass filtering. In this paper, we investigate a possible biophysical mechanism for the low-pass filtering
properties of LFPs. We investigate the propagation of electric fields and its frequency dependence close to the
current source, i.e., at length scales in the order of average interneuronal distances. We take into account the
presence of a high density of cellular membranes around current sources, such as glial cells. By considering
them as passive cells, we show that under the influence of the electric source field, they respond by polariza-
tion. Because of the finite velocity of ionic charge movements, this polarization will not be instantaneous.
Consequently, the induced electric field will be frequency-dependent, and much reduced for high frequencies.
Our model establishes that this situation is analogous to an equivalent RC circuit, or better yet a system of
coupled RC circuits. We present a number of numerical simulations of an induced electric field for biologically
realistic values of parameters, and show the frequency filtering effect as well as the attenuation of extracellular
potentials with distance. We suggest that induced electric fields in passive cells surrounding neurons are the
physical origin of frequency filtering properties of LFPs. Experimentally testable predictions are provided
allowing us to verify the validity of this model.
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I. INTRODUCTION

Electric fields of the brain, which are experimentally ob-
servable either on the surface of the scalp, or by microelec-
trodes, are due to currents in dendrites and the soma of cor-
tical pyramidal cells �1,2�. Experimental measurements of
electric fields created in the brain distinguish three scenarios:
�i� Local field potentials �LFPs� denote the electric potential
recorded locally in the immediate neighborhood of neurons
using microelectrodes of a size comparable to the cell body.
�ii� The electrocorticogram �ECoG� refers to measurements
of the field using electrodes of a diameter of the size of about
1 mm, placed on the cortical surface. �iii� The electroen-
cephalogram �EEG� is measured at the surface of the scalp
using electrodes of a centimeter scale. In the latter case, the
electric potential is recorded after conduction through cero-
brospinal fluid, cranium, and scalp, and corresponds to the
situation where the source of the electric signals in the cortex
is located far from the site of detection on the scalp �at a
scale ��103dnn, where dnn=0.027 mm is the average dis-
tance between cortical neurons�.

By contrast with the intracellular or membrane potential,
which biophysical properties have been extensively studied
�3–5�, the mechanisms underlying the genesis of LFPs are
still unclear. LFP recordings routinely show strong high-
frequency attenuation properties, because action potentials
are only visible for a few neurons immediately adjacent to
the electrode, while low-frequency components result from
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large populations of neurons in the local network. Using
LFPs, it has been shown that low-frequency oscillations
�0–4 Hz� have a large scale coherence, while the coherence
of higher frequency �20–60 Hz� oscillations is short ranged.
In anesthetized animals, it was shown that oscillations of up
to 4 Hz have a coherence range in the order of several mil-
limeters, while oscillations of 20–60 Hz have a coherence of
a submillimeter range �6,7�. The local coherence of high-
frequency oscillations was also shown in the visual system of
anesthetized cats, where gamma oscillations �30–50 Hz� ap-
pear only within restricted cortical areas and time windows
�8,9�. The same difference of coherence between low- and
high-frequency oscillations was also demonstrated in
nonanesthetized animals, respectively, during sleep in a state
of low-frequency waves and waking �10�. Similar findings
have been reported for human EEG �11�.

A full understanding of the mechanisms underlying the
genesis of EEG and LFP signals is required to relate these
signals with neuronal activity. Several models of EEG or
LFP activity have been proposed previously �e.g., see
�1,12–17��. These models always considered current sources
embedded in a homogeneous extracellular fluid. In such ho-
mogeneous media, however, there cannot be any frequency
filtering property. Extracellular space consists of a complex
folding of intermixed layers of fluids and membranes, while
the extracellular fluid represents only a few percent of the
available space �19,20�. Due to the complex nature of this
medium, it is very difficult to draw theories or to model
LFPs properly, and one needs to make approximations. In a
previous paper �18�, we considered current sources with vari-
ous continuous profiles of conductivity according to a spheri-

cal symmetry, and showed that it can lead to a low-pass
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frequency filtering. This showed that strong inhomogeneities
in conductivity and permittivity in extracellular space can
lead to a low-pass frequency filtering, but this approach was
not satisfactory because high-pass filters could also be ob-
tained, in contradiction to experiments. In addition, this
model predicted frequency attenuation which was not quan-
titative, as action potentials were still visible at the 1 mm
distance, which is in contrast to what is observed experimen-
tally.

In the present paper, we go one step further and consider
an explicit structure of extracellular space, in which we study
the interaction of the electric field with the membranes sur-
rounding neurons. Neurons are surrounded by densely
packed membranes of other neurons and glial cells �19–21�,
a situation which we approximate here by considering a se-
ries of passive spherical membranes around the source, all
embedded in a conducting fluid. We show that the low-pass
frequency filtering can be determined by the membranes of
such passive cells and the phenomenon of electric polariza-
tion.

II. GENERAL THEORY

In this section, we describe the theoretical framework of
the model. We start by outlining the model �Sec. II A�, where
a simplified structure of extracellular space is considered. We
also describe its main simplifications and assumptions. Next,
we discuss the physical implementation of this model �Sec.
II B�, while the propagation of the electric fields will be ana-
lyzed more formally in the next sections �Secs. II C–II F�.

A. Model of extracellular space

In Ref. �18�, we considered a model where the electrical
properties of extracellular space are described by two param-
eters only: conductivity � and permittivity �. Both � and �
were considered to vary with location according to some ad
hoc assumptions. V�, the frequency � component of the elec-
tric potential V obtained by a Fourier transformation of the
potential as a function of time, was shown to obey the equa-
tion

�V� + ��� V�� · ��� �� + i���
�� + i���

� = 0. �1�

The physical behavior of the solution is essentially deter-
mined by the expression 1+ i�� /�. When a strong inhomo-
geneity occurs, one may have �� /��1. This means that a
strong phase difference may exist between the electric cur-
rent and potential, i.e., a large impedance. In a neurophysi-
ological context, such behavior is likely to occur at the inter-
face between the extracellular fluid �high conductivity� and
the membranes of cells �low conductivity�. This situation
was considered previously in the context of a simplified rep-
resentation of extracellular space, in which the inhomogene-
ities of conductivity were assumed to be of spherical sym-
metry around the source �18�. Moreover, the equation above
assumes that the charge density of the extracellular medium
is zero when its potential is zero, which is not entirely true
051911
since there is an excess of positive charges on the exterior
surface of neuronal membranes at rest.

In the present work, we consider an explicit structure of
extracellular space in order to more realistically account for
these inhomogeneities of conductivity. The extracellular
space is assumed to be composed of active cells producing
current sources �neurons�, and passive cells �glia�, all embed-
ded in a conducting fluid. Neurons are characterized by vari-
ous voltage-dependent and synaptic ion channels, and they
will be considered here as the sole source of the electric field
in extracellular space. On the other hand, glial cells are very
densely packed in interneuronal space, sometimes surround-
ing the soma or the dendrites of neurons �20,21�. Glial cells
normally do not have dominant voltage-dependent channel
activity, and they rather play a role in maintaining extracel-
lular ionic concentrations. Like neurons, they have an excess
of negative charges inside the cell, which is responsible for a
negative resting potential �for most central neurons, this rest-
ing membrane potential is around −60to −80 mV�. They will
be considered here as “passive” and representative of all
non-neuronal cell types characterized by a resting membrane
potential. We will show that such passive cells can be polar-
ized by the electric field produced by neurons. This polariza-
tion has an inertia and a characteristic relaxation time which
may have important consequences to the properties of propa-
gation of local field potentials. These different cell types are
separated by extracellular fluid, which plays the role of a
conducting medium, i.e., allows for the flow of electric cur-
rents. In the remainder of this text, we will use the term
passive cell to represent the various cell types around neu-
rons, but also bearing in mind that they may represent other
neurons as well.

Another simplification is that we will consider these pas-
sive cells as of elementary shapes �spherical or cubic�. Under
such a simplification, it will be possible to treat the propaga-
tion of field potentials analytically and design simulations
using standard numeric tools. Our primary objective here is
to explore one essential physical principle underlying the
frequency-filtering properties of extracellular space, based on
the polarization of passive membranes surrounding neuronal
sources. We assume that such a principle will be valid re-
gardless of the morphological complexity and spatial ar-
rangement of neurons and other cell types in extracellular
space. As a consequence of these simplifications, the present
work does not attempt to provide a quantitative description
but rather an exploration of first principles that could be
applied in a later work to the actual complexity of biological
tissue.

The arrangement of charges in our model is schematized
in Fig. 1�a�, where we delimited 5 regions. The membrane of
the passive cell �region 3� separates the intracellular fluid
�region 5� from the extracellular fluid �region 1�, both of
which are electrically neutral. The negative charges in excess
in the intracellular medium agglutinate in the region imme-
diately adjacent to the membrane �region 4�, while the analo-
gous region at the exterior surface of the membrane �region
2� contains the positive ions in excess in the extracellular
space. This arrangement results in a charge distribution
�schematized in Fig. 1�b�� which creates a strong electric

field inside the membrane and a membrane potential.
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The behavior of such a system depends on the values of
conductivity and permittivity in these different regions �they
are considered constant within each region�. The extracellu-
lar fluid �region 1� has good electric conductance properties.
We have taken as conductivity �1=4 �−1 m−1, consistent
with biological data �=3.3–5 �−1 m−1, taken from measure-
ments of a specific impedance of the rabbit cerebral cortex
�22�. This value is comparable to the conductivity of salt
water ��sw=2.5 �−1 m−1�. The permittivity is given by �1

=70 �0, corresponding to salt water. Here �0=8.854
�10−12 Farad/m denotes the permittivity of the vacuum. In
region 2, to the best of our knowledge, there are no experi-
mental data on conductivity close to the membrane. We have
chosen the values of �2=0.7�10−7 �−1 m−1 and �2=1.1
�10−10 Farad m−1�12�0 for region 2. Such a choice is not
inconsistent with biological observations. First, electron mi-
croscopic photographs taken from the region near the mem-
brane reflect very little light, which hints to quite a low con-
ductivity compared to the conductivity of region 1. We
consider it as plausible that permittivity in region 2 should be
smaller than in region 1. Our choice of �2 and �2 corresponds
to a Maxwell time TM yielding a cutoff frequency fc
�100 Hz, which was also the choice given in a previous
study investigating composite materials �23�.

For passive cells, we neglect ion channels and pumps lo-
cated in the membrane, which is equivalent in assuming the
absence of any electric current across the membrane. There-
fore, region 3 has zero conductivity perpendicular to the
membrane surface. The capacity of a cellular membrane has
been measured and is about C=10−2 Farad/m2 �4�. Approxi-
mating the membrane by a parallel plate capacitor �with sur-

face S and distance d, obeying C=�S /d�, one estimates the
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electric permittivity of membrane to �3=10−10 Farad/m.
Hence we used the parameters �3=0, and �3=12�0.

Thus the basic idea behind the model is as follows: As
represented in Fig. 1, we consider a single spherical passive
cell under the influence of an electric field. The electric field
will induce a polarization of the cell by reorganizing its
charge distribution �Figs. 1�c� and 1�d��. This polarization
will create a secondary electric field, with field lines connect-
ing those opposite charges. It is a customary notation to call
the original electric field the source field, or the primary
field, while the field due to polarization is called the induced
field, or the secondary field. The physical electric field is the
sum �in the sense of vectors� of both, the source and the
induced field. This induced field will be highly dependent on
frequency, for high frequencies, the “inertia” of the charge
movement in regions 2 and 4 will limit such a polarization,
and will reduce the effect of the induced field. This phenom-
enon is the basis of the model of frequency-dependent local
field potentials presented in this paper.

B. Physical implementation of the model

We introduce here the toolbox of physics used for the
construction of our model, in which we consider neurons as
the principal sources of the electric current. In electrodynam-
ics, one distinguishes between a current source and a poten-
tial source. A current source, e.g., in an electric circuit,
means that if the electric current is used to do some work, the
source maintains its level of current. Likewise, a potential
source maintains its electric potential. Although neurons are
generally considered as current sources, here we have chosen
to consider them as potential sources, for the following rea-

FIG. 1. Scheme of charge dis-
tribution around the membrane of
a passive cell. �a� Charge distribu-
tion at rest. The following regions
are defined: the extracellular fluid
�region 1�, the region immediately
adjacent to the exterior of the
membrane where positive charges
are concentrated �region 2�, the
membrane �region 3, in gray�, the
region immediately adjacent to the
interior of the membrane where
negative charges are concentrated
�region 4�, and the intracellular
�cytoplasmic� fluid �region 5�. �b�
Schematic representation of the
charge density as a function of
distance �along the horizontal dot-
ted line in �a��. �c� Redistribution
of charges in the presence of an
electric field. The ions move away
from or towards the source, ac-
cording to their charge, resulting
in a polarization of the cell. �d�
Schematic representation of the
charge density predicted from �c�.
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sons. First, these two types of sources are equivalent for
calculating extracellular potentials. The electric potential
within a given region D depends on the limit conditions at
the border of this region, and not on the type of source �cur-
rent vs potential source�. Second, it is much easier to calcu-
late the potential using limit conditions on the potential �Di-
richlet conditions� than using limit conditions with currents
�Neumann conditions�. Third, potentials are better con-
strained from experiments and their range of values is better
known than currents �for example, the amplitude of mem-
brane potential variations in neurons is of the order of
10–20 mV for subthreshold activity, and of about 100 mV
during spikes�.

Let us suppose that we are given a source of electric field,
representing a neuron with some open ion channels. The mo-
tion of ions through those channels gives a current density,
and also creates a distribution of charges �ions�. According to
the Maxwell equations, a given distribution of currents and
charges �plus information on the polarization and induction
properties of the medium� determines the magnetic field, the
electric field, and hence the electric potential. In a first step,
we consider the effect of the electric field on a single passive
cell.

The source electric field is the origin of two physical phe-
nomena. First, the electric field exerts a force on charged
particles �ions� and thus creates a motion of charge carriers,
i.e., an electric current. Second, the electric field creates a
displacement of charges in the borderline region of the mem-
brane of the passive cell �region 2�. This displacement cre-
ates an induced potential due to polarization. However, this
polarization is not instantaneous, due to the “inertia” of
charge movements. The charges on the membrane move rela-
tively slowly, which will be responsible for a slow time de-
pendence of the polarization, before reaching equilibrium.
The characteristic time scale of such a process is given by
Maxwell’s relaxation time TM �see Eq. �7� below�, which
depends on the properties of the medium, such as resistivity
and permittivity. The temporal behavior of the source is dy-
namic, which can be characterized by some characteristic
time scale TS. For example, during the creation of an action
potential, ion channels open and ionic currents flow, and the
electric field and the potential changes. After a certain time
the neuron source goes back to its state of rest. This means
that the electric current will vanish after some delay. For
example, in a typical neuron, the width of the action poten-
tial is typically of the order of 2 m s. The polarization and
relaxation dynamics of the passive cell depends on both time
scales, TS and TM. This situation holds in the case of an ideal
dielectric medium �conductivity zero, for example, pure wa-
ter�. In the extracellular medium, however, conductivity is
nonzero. As a consequence, the polarization potential and the
current distribution will mutually influence each other.

Thus, we face the question: How do we quantitatively
calculate the electric field and potential in such a medium?
And what is its time dependence and frequency dependence?
Looking at the temporal behavior, there are two different
regimes from the biological point of view. First, there is the
transitory regime which describes the short period of open-
ing and shutting down of the source and its response of the

medium with some delay. Second, there is the so-called
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asymptotic or permanent regime, where no current flows.
These regimes will be considered in the next sections.

C. Asymptotic behavior in region 1

Let us start by considering the behavior in region 1 when
the system has settled into an asymptotic regime. It means
that charges move and after some time attach to the surface
of the passive cell membrane �region 2�. We call this a sta-
tionary or equilibrium regime. In this region, the electric
properties are characterized by permittivity �1 and conduc-
tivity �1. We assume that these electric properties are iden-
tical everywhere inside region 1, i.e., permittivity �1 and con-
ductivity �1 are constant.

To describe this situation, we start by recalling the funda-
mental equations of electrodynamics. Gauss’ law, which re-

lates the electric field E� to the charge density 	, reads

�� · ��1E� � = 	 . �2�

Moreover, because �1 is constant, there is Ohm’s law, which

relates the electric field E� to the current density j�,

j� = �1E� . �3�

From Maxwell’s equations one obtains the continuity equa-
tion

�� · j� +
�	

�t
= 0. �4�

Using Eqs. �2�–�4� and recalling that �1 and �1 are both
constant in region 1 implies the following differential equa-
tion for the charge density:

�	

�t
= −

�1

�1
	 . �5�

A particular solution to this equation requires us to specify
boundary conditions and initial conditions. Here the bound-
ary conditions are such that the electric field �the component
of the field perpendicular to the surface� on the surface of the
source and on the surface of the passive cell is given
�Dirichlet boundary conditions�. The general solution of Eq.
�5� is

	�x�,t� = 	�x�,0�exp�−
�1

�1
t	 = 	�x�,0�exp�− t/TM1

� ,

	�x�,t� →
t→


0, �6�

i.e., with increasing time the charge distribution goes expo-
nentially to zero. The time scale, which characterizes the
exponential law, is Maxwell’s time of relaxation, TM1

. In
general, it is defined by

TM =
�

�
. �7�

In particular, in region 1, one has TM1
=�1 /�1. In the limit of

large time, the continuity equation implies �� · j�=0, i.e., there
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are no sources or sinks. Also in this limit the electric poten-
tial satisfies Laplace’s equation, �V=0, which follows from
Gauss’ law. Maxwell’s relaxation time TM1

in region 1 is
very short, of the order of 10−10 s, thus the charge density
tends very quickly to zero, and so does the extracellular po-
tential.

D. Behavior in region 2

Region 2 is the near neighborhood of the membrane of a
passive cell. The neuronal source creates the source field �or

primary field� E� source. As pointed out above �Fig. 1�c��, due
to the presence of a source and the presence of free charges
near the passive-cell membrane, there will be a polarization
of the free charges, described by an electric induced field �or

secondary field� E� ind also denoted by E� free. Let us assume
that the source field is “switched on” at time t=0. Such a
time dependence is described by a Heaviside step function
H�t�, given by H�t�=1 for t�0 and H�t�=0 for t�0. Thus
we have

E� source�x�,t� = E� 0�x��H�t� . �8�

The electric field present in region 2 results from the source

field E� source, the field due to free charges E� free �which create
the induced field� and the field due to fixed localized charges

�dipoles� of the membrane E� membr. Under the hypothesis that
the passive-cell membrane is a rigid structure with dipoles in
fixed locations and under the assumption that ion channels in
that membrane remain closed, we conclude that the electric

field E� membr does not vary in time. Gauss’ law and the con-
tinuity equation now read

�� · E� free =
	 free

�2
, �� · j� = −

�	 free

�t
. �9�

Ohm’s law reads

j� = �2�E� source + E� free + E� membr� , �10�

which implies

1

�2

�	 free

�t
= − �� · �E� source + E� free + E� membr�

= −
	 free

�2
+ f�x�� for t � 0. �11�

While 	 free depends on the position and time, the function

f�x�� denotes a time-independent term �E� membr is time inde-

pendent and E� source is time independent for t�0�. The solu-
tion of Eq. �11� becomes

	 free�x�,t� = a�x�� + b�x��exp�− t/TM2
� for t � 0. �12�

Here, TM2
=�2 /�2 denotes the Maxwell time in region 2. The

function a�x�� represents the free charge density at equilib-
rium, that is a long time �t= 
 � after the source has been
switched on and the free charges have settled in region 1 in

such a way that in region 1 no net electric field is left and
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hence no flow of electric current occurs. The function b�x��
denotes the difference of the free charge density at the mo-
ment when switching on the source and the free charge den-
sity at equilibrium. One should note that 	 free�x� , t� is a con-
tinuous function in x� at t=0. Poisson’s equation implies that
a linear relation holds between the free charge density and
the induced potential. This and Eq. �12� yields

Vind�x�,t� = c�x�� + d�x��exp�− t/TM2
� for t � 0. �13�

In order to understand the meaning of the functions c�x�� and
d�x��, let us consider as an example the following source po-
tential:

Vsource�x�,t� = H�t� + ��1 − H�t�� , �14�

where � and  are taken as constant in space and time. This
source function makes a jump immediately after t=0. Then
the induced potential becomes

Vind�x�,t� = Vind
equil�x�� + �Vind�x�,t = + �� − Vind

equil�x���

�exp�− t/TM2
� for t � 0, �15�

where Vind
equil�x�� denotes the induced potential at equilibrium

and Vind�x� , t= +�� denotes the induced potential immediately
after the source has been switched on. The resulting total
potential is given by

V�x�,t� = Vsource�x�,t = + �� + Vind�x�,t� for t � 0, �16�

where Vsource�x� , t= +�� denotes the source potential Eq. �14�
immediately after the source has been switched on.

Now let us consider more specifically a source with time
dependence given by the following function:

Vsource�x�,t� = 
H�t� , case �a� ,

��1 − H�t�� , case �b� .
� �17�

In case �a�, the source potential is constant �=� in space and
jumps in time from 0 to 1 immediately after t=0, meaning
the source is switched on. In case �b�, the source potential is
constant �=�� in space and jumps in time from 1 to 0 imme-
diately after t=0, meaning that the source is switched off. By
repetition of alternate switch-ons and switch-offs, one can
introduce a temporal pattern with a certain frequency, as
shown in Fig. 2�a�. Here we are interested in the temporal
behavior of the induced potential under such circumstances.
In case �a� Eq. �15� implies for the induced potential the
following relation:

Vind�x�,t� = Vind
equil�x���1 − exp�− t/TM2

�� for t � 0. �18�

By a differentiation, one finds that the induced potential
obeys the following differential equation:

�Vind�x�,t�
�t

+
1

TM2

Vind�x�,t� =
1

TM2

Vind
equil�x�� . �19�

Similarly, in case �b� one obtains for the induced potential

Vind�x�,t� = Vind�x�,t = o�exp�− t/TM2
� for t � 0, �20�
which obeys the following differential equation:
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�Vind�x�,t�
�t

+
1

TM2

Vind�x�,t� = 0. �21�

Equations �19� and �21� can be expressed as

�Vind�x�,t�
�t

+
1

TM2

Vind�x�,t� =
1

TM2

f�x��H�t� ,

f�x�� = 
Vind
equil�x�� , case �a� ,

0, case �b� .
� �22�

In order to solve this differential equation, one has to know
the function f�x�� given by Vind

equil�x�� in case �a�. How to obtain
this function? We consider the case of an ideal dielectric
medium in region 1. The function Vind

equil�x�� is related to the
full potential and the source potential via

Vind
equil�x�� = Vtot

equil − Vsource
equil �x�� . �23�

The resulting total potential at equilibrium Vtot
equil on the sur-

face of the membrane will be constant in time and in space
�on the membrane surface�, i.e., independent of position x�,
because otherwise there would be a flow of charges. The
value of Vequil can be found by computing
tot

051911
�
S

dS� · �1E� tot
equil = Qtot

equil. �24�

The integral is done over any surface S in the extracellular
fluid, chosen such that it only includes the passive cell. Qtot

equil

is the total charge in the interior of such a surface S. The
physical value of Vtot

equil must be such that the corresponding

electric field E� tot
equil yields Qtot

equil=0 via Eq. �24�, because the
total charge of the passive cell before switching on the
source was neutral.

Note that the above reasoning is valid for an ideal dielec-
tric medium, which is not the case for extracellular media.
However, the small amplitude of the currents involved
�100 pA�, the value of conductivity of extracellular fluid
�3.3 S/m�, the small dimension of most passive cells
�10 �m diameter; 2 nm of membrane thickness�, and the
high resistivity of membranes, imply a weak voltage drop on
cell surfaces due to the current. Thus, the electrostatic induc-
tion is very close to an ideal dielectric.

E. Source given by periodic step function: An equivalent
RC electric circuit

We considered above initial conditions where the source
potential has been switched on at some time. This can be
directly generalized such that the temporal behavior of the

FIG. 2. Time dependence of an
induced electric potential in re-
sponse to an external source given
by a periodic function. �a� Source
potential given by a periodic step
function H(sin��t�), with period
TS=2� /�=80 ms. �b� Induced
electric potential for various val-
ues of TS /TM. In the case
TS /TM �1 �top�, the induced po-
tential fluctuates closely around
the mean value of the source po-
tential. In the case TS /TM �1
�bottom� the induced potential re-
laxes and fluctuates between Vmin

=0 mV and Vmax=100 mV of the
source potential. As a result, the
amplitude of the oscillation be-
comes more attenuated with in-
creased frequency f =1/TS.
source potential is given by a periodic step function, with a
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period TS, as shown in Fig. 2�a�. The corresponding induced
potential, presented in Fig. 2�b�, shows a piecewise exponen-
tial increase followed by an exponential decrease. The figure
shows the response to a source of a periodic step function,
for different values of TS measured in units of TM. One ob-
serves the following behavior. At the top of the figure the
period TS is smallest, i.e., which corresponds to a rapid os-
cillation about its time average. At the bottom of the figure
the period TS is largest, corresponding to a low-frequency
oscillation. It is important to note that the amplitude of os-
cillation �i.e., the difference between its maximal and mini-
mal value� is much smaller for small TS than for large TS.
This yields an attenuation effect of high frequencies in the
induced potential.

Such behavior of the induced potential is well known
from and mathematically equivalent to that of an RC electric
circuit, with a resistor R and a capacitor C �see Fig. 3�. The
equation of motion in such an RC circuit relating the induced
potential Vind

C to the capacity C to the source potential Vsource
is given by

�Vind
C �t�
�t

+
1

RC
Vind

C �t� =
1

RC
Vsource�t� . �25�

This equation is mathematically equivalent to Eq. �22�, if we
identify

Vind�x�,t� ↔ Vind
C �t� , Vind

equil�x��H�t� ↔ Vsource�t� ,

1

�
↔ R , � ↔ C , TM ↔ RC . �26�

Thus, for each point x� near the membrane of a passive cell
�region 2 in Fig. 1�a��, we can set up an equivalent electric
circuit, which is equivalent in the sense that it gives a differ-
ential equation with the same mathematical solution as for
the induced potential of the original system of a source and a
passive cell.

F. Induced potential for time-dependent source
and transfer function from Fourier analysis

The analog of an RC electric circuit can be used to deter-
mine the characteristic properties of the source and/or
passive-cell system, like the cutoff frequency. For that pur-
pose let us consider the source potential to be given by a
periodic function of a sinusoidal type switched on at time t
=0:

FIG. 3. Model of an electric circuit with capacitor C, resistor R.
Vsource denotes the potential of the source and Vind

C denotes the
induced potential at the capacity C.
051911
Vsource�x�,t� = V0�x��exp�i�t�H�t� . �27�

The corresponding induced potential in our model obeys Eq.
�22�, which can be written in the form

�Vind�x�,t�
�t

+
�

�
Vind�x�,t� =

�

�
V0�x��H�t�exp�i�t� . �28�

It can be shown that the large-time asymptotic behavior of
the solution Vind�x� , t� is given by

Vind�x�,t� 
t→


�

� + i��
V0�x��exp�i�t� . �29�

The asymptotic behavior enters also into the transfer func-
tion. The transfer function is obtained from the Fourier trans-
formation of the temporal behavior of the induced potential.
It is defined by the ratio of induced potentials corresponding
to frequency � of the source over the induced potential at
frequency �=0 of the source, by the following expression:

FTM�x�,�� = lim
t→


Vind
� �x�,t�exp�− i�t�

Vind
�=0�x�,t�

. �30�

Comparing Eqs. �29� and �30�, we obtain

FTM��� =
1

1 + i��/�
. �31�

FTM is a complex function, with modulus

�FTM���� =
1

�1 + ���/��2
. �32�

For frequency zero one has �FTM � =1. The cutoff frequency
fc is defined such that �FTM� falls off to the value �FTM �
=1/�2. Thus we find

fc =
�c

2�
=

�

2��
= �2�TM�−1. �33�

The modulus of the transfer function vs frequency is shown
in Fig. 4, for the case of parameters � and � of region 2, as
given in Sec. II A. This corresponds to a cutoff frequency

FIG. 4. Modulus of a transfer function vs frequency, using bio-
logically realistic parameters � and �.
fc=100 Hz. Such a behavior represents a frequency filter. It
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shows that we can compute the induced potential as a func-
tion of frequency based on the analogy with an equivalent
electric circuit with a resistor R and capacity C arranged in
serial order. A series of detailed numerical simulations, mod-
eling frequency filtering of extra-cellular neural tissue in the
neighborhood of passive cells in terms of the electric circuit
model, Eq. �25�, using physiologically realistic parameters of
� and � are shown in Fig. 5. They present the signal coming
from a periodic step function with a period TS=10 ms, i.e., a
frequency of 100 Hz. Going from Fig. 5�a� to Fig. 5�c� TS is
kept fixed but TM increases, i.e., TS /TM decreases. Figure
5�a� corresponds to the case where the relaxation time TM is
10 times smaller than the period of the signal TS. In Fig. 5�b�
TM and TS are equal, and in Fig. 5�c� TM is 10 times larger
than TS. We observe that the shape of the signal after filtering
is more or less intact for TS /TM =10 and becomes gradually
more deformed when going over to TS /TM =0.1. As the Fou-
rier transformation after filtering shows, the higher frequency
components get gradually more suppressed. This represents a
low-frequency band pass.

To close this section, we would like to remark that the
treatment above is general and not restricted to step func-
tions. The Heaviside functions were used as a tool to distin-
guish transient and asymptotic behaviors, as well as to cal-

culate the transfer function. For an arbitrarily complex time-

051911
dependent source, the convolution integral with this transfer
function gives the filtered signal, so this approach can be
applied to any physical signal.

III. MODELING FREQUENCY DEPENDENCE
OF MULTIPLE NEURONS AND PASSIVE CELLS

In Sec. II, we laid out the theoretical framework of the
model and showed that this model—with respect to time and
frequency dependence but neglecting spatial dependence—is
equivalent to a RC-circuit model. As an example, we have
presented numerical simulations treating the case of a single
source and a single passive cell. In this section, we would
like to generalize this approach to take into account space
and time dependence in LFPs. In this and the following
section, we present numerical simulations considering more
complex three-dimensional arrangements of neuronal
sources and passive cells.

A. Computation of field potentials
for multiple neurons and passive cells

In a first set of numerical simulations, we considered
three-dimensional arrangements of sources and passive cells.

FIG. 5. Effect of the filtering
of a periodic electrical potential
representing a neural source. �a�
The original signal �top row, left
panel�. The frequency spectrum of
such a signal is obtained by Fou-
rier transformation �top row, right
panel�. Then the signal is sent
through a filter �middle row, right
panel�. After an inverse Fourier
transformation the filtered signal
as a function of time is obtained
�middle row, left panel�. The pe-
riod of the original signal is
10 ms, and the relaxation time of
the filter is 10 ms. �b� Same signal
as in �a� filtered using a relaxation
time of 1 ms. �c� Same signal as
in �a�, filtered using a relaxation
time of 100 ms.
To solve the equations, we used a discretization method simi-
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lar to the finite element methods �see below�. The neuron
source was represented by a cubic shape of length Lneuron,
and likewise, we consider the passive cells being represented
by cubes of length Lpass. Neuron source and passive cells
were located at some distance d from each other. Although
being far from realistic, this geometry facilitates numerical
simulations. Since the aim of this work is not to make quan-
titative predictions, such an arrangement will help explaining
qualitatively the frequency attenuation properties of field po-
tentials in three-dimensional �3D� arrangements of cells, as
we will show below.

Let us first outline the method of the numerical computa-
tion of the potential. From a mathematical point of view, the
solution of a partial differential equation is required to
specify suitable boundary conditions. In the context of Max-
well’s equations, Dirichlet’s boundary conditions �potential
given on a closed surface� or von Neumann’s boundary con-
ditions �electric field given on a closed surface� are known to
guarantee a unique solution. Here, we suggest using the
boundary condition of Dirichlet’s type, that is we assume
that the potential is given on the surface of all cells. The
problem is, however, that the value of the physical potential
on the surface of those cells is not known a priori, and,
moreover, the functional values of the potential cannot be
chosen freely. The physical solution is determined by the
principle that all free charges are located such that the elec-
tromagnetic field energy becomes minimal �Thomson’s theo-
rem�. This imposes constraints on the boundary conditions.

How can we figure out those a priori unknown boundary
conditions? We use the physical principle that those physical
boundary conditions are equivalent to the condition that
Gauss’ integral summing the flux around a charge source
becomes invariant when the integration surface is changed. A
computational strategy to find those boundary conditions is
to use a variational principle, starting from some initial guess
of boundary conditions and then to adjust iteratively the
boundary conditions until eventually the total electric energy
attains its minimum.

We used a variational principle via the following iterative
scheme. In the first step, we compute the potential due to the
source in the absence of any passive cell in the asymptotic
regime �a long time after the source has been switched on�,
for the case where the source has no frequency dependence
��=0�. We assume that the potential obeys the boundary
condition on the surface of the neuron source

V�x�� = V0 = const for x� on the surface of the source.

�34�

The potential satisfies Laplace’s equation

�V�x�� = 0. �35�

The numerical solution has been carried out using the stan-
dard method of relaxation.

In the second step, we place a passive cell at some dis-
tance d from the neuron source. We want to calculate the
induced potential due to the presence of the passive cell. We
proceed in the following way. Let us consider for a moment
that the passive cell is small compared to the size of the
051911
neuron, Lpass�Lneuron. Then the induced potential on the
surface of the passive cell would be almost identical to
Vpass

center, the potential created by the source alone, evaluated at
the center of the passive cell. Then imposing the boundary
condition that the potential on the surface of the passive cell
takes the value Vpass

center would be very close to the exact solu-
tion. Now we no longer consider the passive cell as tiny.
Then imposing the boundary condition boundary on the sur-
face of the passive cell

V�x�� = Vpass
center = const x� on a surface of a passive cell

�36�

becomes an approximation.
In the third step, taking into account that the potential

obeys the boundary conditions on the neuron source and on
the passive cell, Eqs. �34� and �36�, we solve again Laplace’s
equation, Eq. �35�. Now we will test if the obtained solution
V�x� , t� is the correct solution. Using Gauss’ theorem, one has

�
Sneuron

ds� · E� = �
Sneuron+pass

ds� · E� . �37�

Here the integral denotes an integral over a closed surface,
first englobing the neuron source and second englobing the
neuron source plus the passive cell. Because the passive cell
has a total charge Qpass=0, Eq. �37� should be satisfied by
the physical solution Vphys�x� , t�. As long as V�x� , t� differs
from Vphys�x� , t�, one has to adjust the potential on the surface
of the passive cell, solve again Laplace’s equation, and verify
the charge balance Eq. �37�. This is an iterative process,
which turned out to converge quite fast towards the physical
solution.

This method can be applied as well to treat multiple neu-
ron sources and multiple passive cells. We would like to
point out that the extracellular neural tissue is composed of
much more passive cells than neurons. On average the num-
ber of glial cells per unit volume is higher than the number
of neurons per unit volume by about a factor of 10. The
physical consequence of this property is that the induced
potential due to the presence of passive cells becomes more
important than the source potential.

Finally, to investigate the effect of time-dependent
sources and multiple passive cells, we take advantage of the
following equivalence: the induced potential on a cell with a
relaxation time TM subject to a time-dependent source is
equivalent to the induced potential in a cell with TM =0 sub-
ject to a “filtered” source given by the convolution of the
source with the transfer function �FTM in Eq. �30��. This
corresponds to the following calculation steps, for each pas-
sive cell: �1� evaluate the source S�x� ,�� provided by the
neighboring system of sources and other passive cells; �2�
evaluate the filtered source S*�x� ,��=S�x� ,��FTM��� �from
Eq. �31��; �3� calculate the induced potential on the passive
cell using a similar procedure as outlined above for a time-
independent source ��=0�. The whole procedure is repeated
iteratively until all sources and induced potentials converge
towards the physical solution. Numerical results using this
iterative procedure are presented in the next section.
-9
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It is important to note that in the range of frequencies
considered here, the wavelengths are too large for significant
wave propagation phenomena. Accordingly, we only con-
sider sources where space and time dependences factorize.
Consequently, the transfer function does not have any space
dependence. In addition, the application of the transfer func-
tion holds for spherical sources as well as for cubic sources.

B. Numerical results

We now present results of numerical solutions of
Laplace’s equation for the scenario in the presence of a

FIG. 6. Extracellular potential generated by a time-independent s
cell �a� have a cubic shape; the passive cell was twice smaller than
horizontal plane cut at the base of both cells. �b� Electric potential
�Vind�. All potentials were obtained by solving Laplace’s equation w
source potential. The distance is represented in units of 0.1 �m.
051911-
source and several passive cells. We have taken as param-
eters of conductivity and permittivity those corresponding to
the intracellular space at the membrane of the passive cell,
given in Sec. II A �conductivity is nonzero�. It corresponds
to a cutoff frequency of fc=100 Hz. The corresponding Max-
well time and transfer function are obtained by Eqs. �33� and
�31�.

The goal is to show that the induced potential gives an
important contribution to the total, i.e., physical potential.
The results are presented in Figs. 6–9. For the case of a
single source and a single passive cell the source potential,

e situated nearby a passive cell. Both the source �s� and the passive
source. �a� Total extracellular electric potential �Vsource+Vind� in a
lting from the source only �Vsource�. �c� Induced electric potential
static source �f =0�, and are represented in units of a percent of the

FIG. 7. Same as Fig. 6, but
showing the induced potential Vind

for a time-dependent source �fre-
quencies f =0,100,200,400 Hz in
�a�, �b�, �c�, �d�, respectively�. The
induced potential tends to zero
when f increases.
ourc
the
resu
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the induced potential, and the total potential are shown in
Figs. 6�a�–6�c�, respectively. Comparing the source potential
�b� with the induced potential �c�, one observes that the latter
gives a substantial contribution. In Figs. 7�a�–7�d� we show
the induced potential multiplied with the norm of the transfer
function. We observe that the frequency-dependent induced
potential decreases when the frequency of the source in-
creases from 0 to 400 Hz. Figures 8 and 9 show the corre-
sponding results in the case of a single source and four pas-
sive cells. We observe qualitatively the same results as in
Fig. 6. These results demonstrate clearly the phenomenon of
attenuation of high frequencies in the induced potential. It
should be mentioned that the computations were carried out
in 3D, but are depicted as a projection in 2D. Qualitatively

FIG. 8. Extracellular potential generated by a time-independent s
for a system of a single static source �s� and six passive cells. The fig
are visible �a�. �a� Total extracellular potential; �b� source electric p
051911-
the same results are obtained in the case of two sources and
a single passive cell �not shown�. Again we found that for the
time-independent source the induced potential is non-
negligible compared to the source potential and the fre-
quency-dependent induced potential rapidly decreases when
the frequency goes from 0 to 400 Hz.

IV. ATTENUATION AS A FUNCTION OF DISTANCE

The simulations shown in the preceding section illustrated
the fact that the induced potential vanishes for very high
frequencies of the source field, a fact that can also be de-
duced from Eq. �22�. In other words, for very high frequen-
cies ��TM

−1�, the extracellular field will be equal to the

e surrounded by six passive cells. Same description as in Fig. 6, but
shows the potential in a horizontal plane in which four passive cells
tial; �c� induced electric potential Vind.

FIG. 9. Same as Fig. 8, but
showing the induced potential Vind

for a time-dependent source at dif-
ferent oscillation frequencies
�f =0,100,200,400 Hz in �a�, �b�,
�c�, �d�, respectively�.
ourc
ure
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source field, since the induced field will vanish. The space
dependence is easy to deduce in such a case, and the extra-
cellular potential attenuates with distance according to a 1/r
law, as if the source was surrounded only by conducting
fluid.

However, for very low frequencies ��TM
−1�, the space de-

pendence of the extracellular potential will be a complex
function depending on both the 1/r attenuation of the source
field, and the contribution from the induced field. Such a
space dependence is not easy to deduce, since it depends on
the spatial arrangement of fluids and membranes around the
source. In this section, we attempt to derive such a low-
frequency space dependence for a more realistic system of
densely packed cells �illustrated in Fig. 10�a��. To constrain
the behavior to low frequencies, we only consider the zero-
frequency limit by using a constant source field. We pro-
ceeded in two steps. First, we calculated the electric potential
at the surface of a passive cell �Sec. IV A�. Second, we cal-
culated the spatial profile of LFPs in a system of densely

FIG. 10. Extracellular potentials as a function of distance for a
system of densely packed spherical cells. �a� Scheme of the ar-
rangement of successive layers of identical passive cells packed
around a source �in gray�. The potential of the source is indicated by
V0. V1 ,V2 , . . . ,Vn indicate the potential at the surface of passive
cells in layers 1 ,2 , . . .n, respectively. The dotted lines indicate iso-
potential surfaces, which are concentric spheres centered around the
source, and which are indicated here by S1 ,S2 , . . . ,Sn. �b� Extracel-
lular potential as a function of distance �in units of a cell radius�,
comparing two cases: with induction �solid line, corresponding to
the arrangement schematized in �a��, and without induction �dashed
line, source surrounded by conductive fluid only�. Both cases pre-
dict a different scaling of the electric potential with a distance �see
text for details�.
packed spheres of identical shape �Sec. IV B�.

051911-
A. Electric potential at the surface of passive
membranes at equilibrium

Let us assume that a spherical passive cell is embedded in
a perfect dielectric medium, and is exposed to a constant
electric field. At equilibrium, we have seen above that the
effect of the electric field is to polarize the charge distribu-
tion at the surface of the cell, such as to create a secondary
electric field �see Fig. 1�b��, but the induced electric field is
zero inside the cell. In this case, the conservation of charges
on the surface implies

� �
Surf

	SurfdS = 0, �38�

where 	Surf is the charge density on the surface of the cell.
The resulting electric potential is given by

Vtot�x,y,z� = Vsource�x,y,z� +� �
Surf

	Surf

4��r
dS , �39�

where Vsource is the electric potential due to the source field,
Vtot is the total resulting electric potential due to the source
field and the induced field, and r is the distance from point
�x ,y ,z� to the center of the cell. Because at the center of the
cell, �a ,b ,c�, we necessarily have r=R �where R is the cell’s
radius�, the value of the resulting electric potential at the
center is given by

Vtot�a,b,c� = Vsource�a,b,c� +� �
Surf

	Surf

4��R
dS

= Vsource�a,b,c� . �40�

Thus, the electric potential at the surface of a spheric passive
cell at an equilibrium equals the potential due to the primary
field at the center of the cell. In other words, the effect of the
secondary field in this case perfectly compensates the dis-
tance dependence of the primary field, such as the surface of
the cell becomes isopotential, as discussed above.

B. Attenuation of an electric potential
in a system of packed spheres

Keeping the assumption of a constant electric field, we
now calculate how the extracellular potential varies as a
function of distance in a simplified geometry. We consider a
system of packed spheres as indicated in Fig. 10�a�. From the
solution of Laplace’s equation, the extracellular potential at a
distance r from the source center is given by

V�r� =
k

r
, �41�

where k is a constant, which is evaluated from the potential
at the surface of the source �S0 in Fig. 10�a��:

V�R� = V0 =
k

R
, �42�

where R is the radius of the source. Thus, the potential due to
the source field at a given point r in extracellular space is

given by
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V�r� =
RV0

r
. �43�

Considering the arrangement of Fig. 10�a�, if all cells of a
given layer are equidistant from the source, their surface will
be at the same potential �see Sec. IV A�, which we approxi-
mate as a series of isopotential concentric surfaces �S1 ,
S2 , . . . ,Sn in Fig. 10�a��. A given layer �n� of isopotential
cells is therefore approximated by a new spherical source of
radius rn, which will polarize cells in the following layer
�n+1�. According to such a scheme, the potential in layer
n+1 is given by

Vn+1 =
rnVn

dn+1
, �44�

where dn+1 is the distance from the center of cells in layer
�n+1� to the center of the source. According to the scheme
of Fig. 10�a�, we have rn= �2n+1�R and dn=2nR. Thus, we
can write the following recurrence relation:

Vn+1 =
2n + 1

2n + 2
Vn. �45�

Consequently

Vn+1 = ��
j=1

n
2j + 1

2j + 2
�V0, �46�

which can be written, for large n

Vn =
�2n + 1�!

22n�n + 1� ! n!
V0 �

2�2n�!
22n�n ! �2V0. �47�

Using Stirling’s approximation, n ! ��n /e�n�2�n for large n,
leads to

Vn �
2

��n
V0. �48�

Thus, in a system of densely packed spherical cells, the ex-
tracellular potential falls off like 1/�r �Fig. 10�b�, continuous
line�.

In contrast, in the absence of passive cells in extracellular
space, the electric potential is given by the source field only
�Eq. �43��, which, using the same distance notations as
above, is given by

Vn+1 =
V0

2�n + 1�
. �49�

Such 1/r behavior is illustrated in Fig. 10�b� �dashed line�.
Note that other theories predict a steeper decay. For instance,
the Debye-Hückel theory of ionic solutions �24� predicts a
fall-off as exp�−kr� /r.

Thus, for this particular configuration, there is an impor-
tant difference in the attenuation of an extracellular potential
with distance. The extracellular potential in a system of
densely packed spheres falls off approximately like 1/�r, in
contrast to a 1/r behavior in a homogeneous extracellular
fluid. Note that a 1/�r behavior can also be found in a system

in which the source is defined as a current. For a constant
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current source I0, with variations of conductivity following a
spherical symmetry around the source, the extracellular po-
tential is given by �18�

V�r� =
I0

4�
�

r


 1

r2��r�
dr , �50�

where ��r� is the radial profile of conductivity around the
source. Assuming that ��r�=�0 /�r, gives

V�r� =
�0I0

4��r
=�R

r
V0. �51�

Consequently, the 1/�r behavior found above is function-
ally equivalent to a medium with conductivity varying like 1/
�r. This “effective conductivity” is similar to that introduced
in a previous study �18�.

V. DISCUSSION

From theoretical considerations and numerical simula-
tions we have obtained the following main results: �i� We
explored the assumption that neuronal current sources polar-
ize neighboring cells. This polarization produces an induced
electric field, which adds to the electric field directly pro-
duced by the sources. This induced field is non-negligible for
biologically realistic parameters. �ii� This induced electric
field has strong frequency-dependent properties. This system
is equivalent to an equivalent RC circuit and always has
low-pass filtering properties. �iii� The cutoff frequency of
this low-pass filter is determined by Maxwell’s relaxation
time of the membrane surfaces surrounding neuronal
sources. �iv� Consequently, the attenuation of high frequen-
cies will not be influenced by this induced field, and will be
the same as if neurons were embedded in a homogeneous
extracellular medium. On the other hand, the attenuation of
low frequencies will depend on the induced field, and will,
therefore, depend on the geometry of fluids and membranes
in the extracellular space.

In our previous work, we showed that inhomogeneities of
conductivity or permittivity in extracellular space could give
rise to strong frequency filtering properties �18�. However,
low-pass or high-pass filters could be obtained depending on
the profiles of conductivity used in this model. In the present
model, a low-pass filter is predicted, consistent with experi-
ments �which never evidenced a high-pass filter�. However,
the fact that frequency filtering properties are due to the al-
ternance of high-conductive fluids and low-conductive mem-
branes in the present model is compatible with the inhomo-
geneity of conductivity postulated in the previous model.
One main difference with the previous model is that here, we
explicitly considered a nonzero charge density on neighbor-
ing membranes.

Another similarity with the previous model concerns the
mechanism of the attenuation of LFPs with distance. The
primary or source field experiences a steep attenuation for all
frequencies, and the electric potential will attenuate with a
distance r following a 1/r law, similar to the attenuation in a

homogeneous conducting fluid �1�. On the other hand, the
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induced field will be subject to a different law of attenuation
with distance, which will depend on the spatial arrangement
of passive cells around the source. In the previous model it
depended on the particular conductivity profile �18�. In gen-
eral, for densely packed cellular membranes around the
source, one will have a law of attenuation which will be of
1 /r�, where ��1 may depend on the frequency �. For ex-
ample, we found �0.5 for spherical cells in Fig. 10 for low
�. Thus, both models predict the following scenario: high
frequencies follow an attenuation in 1/r, similar to a homo-
geneous extracellular fluid, but low frequencies follow a
slower attenuation profile, because these frequencies are
“transported” by the induced field.

It should be noted that this model represents a strong ap-
proximation of the actual complexity of the mechanisms in-
volved in the LFP generation. A first approximation was to
consider passive cells as spheres, neglecting their morpho-
logical complexity. Another assumption was that the electric
field results only from neuronal current sources, while other
cell types, such as glial cells, also contain ion channels and
may influence LFPs. A third approximation was to neglect
the effect of variations of extracellular ionic concentrations
�like potassium buffering by glial cells�, which may also in-
fluence LFP activity, especially at low frequencies �in addi-
tion to local variations of conductivity�. It is difficult to es-
timate the consequences of these different approximations,
but the polarization effects described here should occur in
more complex situations, so it is likely that the present con-
siderations apply to more complex geometries and current
sources. This should be tested by numerical simulations, for
example, by constraining the model with 3D reconstructions
of extracellular space from electron microscopic measure-
ments.

The scenario outlined above of a transport of low frequen-
cies can be tested experimentally in different ways. First,
measuring the decay of specific frequency components of
LFPs with distance, and, in particular, how they differ from
the 1/r law, should yield direct information on how much
extracellular space deviates from a homogeneous conducting
fluid. The attenuation profile should also depend on the spa-
tial arrangement of successive fluids and membranes in the
extracellular fluid. It is conceivable to inject sinusoidal cur-
rents �of low amplitude to allow induction effects� of differ-
ent frequencies using a microelectrode and measure the LFP
produced at increasing distances, to obtain the law of attenu-
ation as a function of frequency �i.e., �����. The comparison
with model predictions should tell us to what extent the
model predicts the correct attenuation.

The equivalent RC circuit investigated above also de-
serves some comment. It is well known that an electric cir-
cuit consisting of a resistor and a capacitor, which stores

electric energy, introduces a phase difference between cur-
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rent and potential, and has characteristic low-pass filtering
properties. The fact that such a simple RC circuit may be
used as a model of frequency filtering of cerebral tissue is,
however, more surprising. In fact, if we construct an arrange-
ment of densely packed passive cells around a current source
�such as in Fig. 10�a��, the system will be equivalent to a
series of RC circuits, each representing one “layer” of cells.
In this context, it may be interesting to relate the type of
spatial arrangement to type of equivalent circuit�s� obtained,
for example by considering different cases such as cells or
random diameters, various shapes, or even by using 3D mor-
phological data from real brains obtained by serial recon-
structions from electron microscopy. This type of investiga-
tion constitutes a possible extension of the present work. In
addition, we have considered a source being given by a
single neuron. In reality, the source of LFP activity is a sys-
tem of many neurons with complicated phase relationships
between their activities. An extension of our model in this
direction would also be a most important step to take.

A second model prediction that should be testable experi-
mentally concerns the predicted cutoff frequency. This infor-
mation can be related to experimentally recorded LFPs
which could be analyzed using the Fourier analysis to yield
information about the cutoff frequency. However, such an
analysis should be done by comparing different network
states, to make sure that the cutoff frequency is not depen-
dent on activity but rather depends on structural parameters.
If correctly done, this analysis should provide an estimate of
the Maxwell’s relaxation time for the surface of membranes,
or equivalently the tangential conductivity of membrane, for
which there exists presently no experimental measurement.
Work in this direction is under way.

Finally, we would like to conclude by suggesting that
these theoretical predictions in conjunction with measure-
ments of frequency-dependent field potentials may lead to
new ways for detecting anomalies, for example, due to de-
generative diseases such as Alzheimers or brain tumors. If
such diseases cause structural changes in brain tissue, e.g.,
the creation of vacuoles, this will manifest itself by changes
of electric properties like the attenuation of low-frequency
components with distance. These changes should be visible
in measurements of EEG, ECoG, or LFP signals from mul-
tielectrodes in the area of affected brain tissue. Detecting
such changes supposes a prior understanding of the spectral
filtering properties of these electric signals, which is one of
the main motivations of the present work.
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